Un MOOC pour la Physique

Conductions thermique et électrique

(10 minutes de préparation)

On considère un milieu conducteur de la chaleur et de l'électricité (de conductivité thermique λ, de chaleur massique c, de masse volumique ρ et de conductivité électrique ).

Le milieu, infini dans les directions (Oy) et (Oz), est limité par les plans x = 0 et x = L :

  • En x = 0 : on a un thermostat de température T0.

  • En x = L, on a placé une paroi adiabatique.

Conductions thermique et électrique

Le milieu est parcouru par un courant électrique dont la densité volumique de courant est uniforme :

Les seuls transfert de chaleur considérés ici sont de nature conductive.

Question

La température entre les deux plans x = 0 et x = L est a priori une fonction de x, y , z et du temps t.

Montrer que T ne dépend que de x et du temps, T(x,t).

Déterminer, en régime quelconque, l'équation aux dérivées partielles vérifiée par T(x,t), appelée équation de la chaleur.

Indice

Démontrer l'équation de la chaleur en présence de sources. La puissance électrique est ici (volumique) , avec .

Solution

Invariances par translation selon Oy et Oz : T(x,t) uniquement.

Un bilan d'énergie réalisé sur un volume élémentaire donne : (figure de gauche ci - dessous)

Soit :

D'où :

Avec : (loi de Fourier)

On obtient l'équation de la chaleur avec sources :

Conductions thermique et électrique

Question

Calculer la température T(x) en régime stationnaire en un point M compris entre les plans x = 0 et x = L.

Tracer la courbe T(x). En quel point la température est-elle extrémale ?

Solution

En régime stationnaire :

Conditions aux limites :

En x = 0, T = T0, donc b = T0.

En x = L, la paroi est adiabatique, par conséquent le vecteur densité de courant d'énergie y est nul :

Finalement :

La température est maximale lorsque jQ est nul (soit x = L) et vaut :

La courbe représentant T(x) est donnée ci - dessus.

PrécédentPrécédentSuivantSuivant
AccueilAccueilImprimerImprimer Paternité - Pas d'Utilisation Commerciale - Partage des Conditions Initiales à l'IdentiqueRéalisé avec Scenari (nouvelle fenêtre)