Thermomètre à affichage numérique
(10 minutes de préparation)
Le principe d'un thermomètre à affichage numérique est le suivant :
La sonde thermométrique est une résistance de platine, dont la résistance RPt varie avec la température selon la loi
Où t est la température exprimée en °C, le coefficient de température de résistivité ( ), RPt la résistance en Ω à la température t et RPt,0 la résistance en Ω à 0°C ( ).
Ce capteur est placé dans une des branches d'un pont de mesures (pont de Wheastone) alimenté par un générateur idéal de courant continu ( ).
Les résistances R1, R2, R'3 et R4 sont supposées être indépendantes de la température.
Question
Déterminer la tension en fonction de , , , et .
Question
Quelle valeur faut-il donner à si le pont est équilibré à , c'est-à-dire si à cette température ?
gardera cette valeur dans la suite de l'exercice.
Pour que le pont soit équilibré à la température de 0°C, il faut que :
Soit :
Question
La température pouvant varier entre 0°C et 50°C, déterminer en fonction de la température t.
Faire l'application numérique pour , , , , et .
varie-t-elle linéairement en fonction de la température t ?
A une température t quelconque (exprimée en °C), la résistance de platine peut s'exprimer sous la forme :
La tension Ue peut alors s'écrire :
Par conséquent, en utilisant la condition d'équilibre du pont à 0°C :
Numériquement, il vient :
Avec en °C et en V.
Les valeurs de la tension pour les températures proposées dans l'énoncé sont répertoriées dans le tableau ci-dessous :
Température t (°C) | 0 | 10 | 20 | 30 | 40 | 50 |
Tension (V) | 0 |
|
|
|
|
|
On constate que, dans l'intervalle de températures considéré, et que, par conséquent, : la tension varie de manière linéaire avec la température.
Question
Le signal délivré étant faible, il est amplifié. Quel montage amplificateur peut-on utiliser ? Après amplification et mise en forme, on obtient la tension :
Avec en °C et en V.
Un montage amplificateur simple peut, par exemple, être un montage amplificateur non inverseur, réalisé à partir d'un amplificateur opérationnel idéal et dont le schéma est rappelé sur la figure ci-dessous et pour lequel :
Dans le cadre de cet exercice, la variation affine entre t et est :
Avec en °C et en V.
Question
La tension est appliquée à un convertisseur analogique-numérique (CAN) à approximations successives – 8 bits – échelle (0 – 5 V).
Le CAN permet de coder la tension analogique en un nombre de 8 chiffres binaires (8 bits).
La caractéristique de transfert est donnée sur la figure ci-dessous.
Pourquoi utilise-t-on la base 2 et non la base 10 ? Combien de valeurs numériques le CAN peut-il distinguer ?
Quelle est la variation minimale de pour que la valeur numérique N en base 2 soit modifiée d'une unité, c'est-à-dire du bit de poids le plus faible ?
En déduire la variation minimale de température que l'on peut apprécier avec ce montage.
La base 2 est utilisée ici car c'est elle qui, d'une manière générale, est utilisée en électronique logique.
Le nombre N comporte 8 chiffres, qui peuvent être égaux à 0 ou à 1. Par conséquent, N peut prendre valeurs.
La variation minimale de la tension que l'on pourra déceler sera alors donnée par :
Ce qui correspond à une variation minimale de température égale à :